
Journal of Sound and Vibration (1998) 214(4), 605–637
Article No. sv981556

DYNAMIC ANALYSIS AND VIBRATION CONTROL
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Dynamic analysis and vibration control of a flexible slider–crank mechanism driven by
a permanent magnet (PM) synchronous servo motor are studied in this paper. Geometric
constraint at the end of a flexible connecting rod is derived and introduced into Hamilton’s
principle to formulate the governing equations of the connecting rod which is modelled by
Timoshenko beam theory. The coupling equations describe the rigid-body motion, flexible
vibrations and motor system. In order to control crank speed and reduce flexible vibrations
simultaneously, speed and tracking controllers are designed through a reaching law variable
structure control (VSC) method. By choosing proper parameters in control law, dynamic
responses of the flexible system in reaching mode can be controlled. Numerical results show
that the proposed controllers not only eliminate the dynamic deflections of the flexible
connecting rod, but also keep good tracking performances. Moreover, the robustness
against external disturbances can also be improved by employing the proposed control
scheme.
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1. INTRODUCTION

The need for higher manufacturing throughput has led to the design of machines operating
at higher speeds. Because of the higher operating speeds, mechanisms have been made
as lightweight as possible to reduce the inertial forces and the driving torque requirements.
At higher speeds, the rigid-body assumption is no longer valid and the links should be
considered flexible. In addition, motor drives used to control the motion of a variety
of machines usually contain flexible coupling. High-speed operations of these
machines lead to deflections which affect the dynamic behaviour and the accuracy of the
machines.

The slider–crank mechanism is widely used in gasoline and diesel engines, where the gas
force acts on the slider and the motion is transmitted through the links. Earlier research
work in analysis of elastic mechanisms can be found in many publications. Steady state
solutions and the elastic stability of a slider–crank mechanism were obtained [1–5].
Transient responses were investigated by Chu and Pan [6] on the basis of the ratios of the
length of the crank to that of the connecting rod, and rotating speeds of the crank to those
of the rod, etc. Sadler and Sandor [7] developed a method of kineto-elastodynamic analysis
by using lumped parameter models to simulate the moving components. Lieh [8]
investigated the dynamic behaviour of a slider–crank mechanism with the flexible coupler
and joint. However, the equations were linearized based on the small deformation
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assumption. Fung [9] described the dynamic analysis of a slider–crank mechanism with the
flexible connecting rod which is modelled by Timoshenko beam theory.

The dynamic analysis of a slider–crank mechanism has been studied extensively over the
past 30 years, with much of the research going beyond the current paper to include a totally
flexible mechanism. Wu and Mani [10] introduced the modelling of flexible bodies for
multibody dynamic systems by using the Ritz vector. Liu and Lin [11] developed a finite
element method based on the dynamic stiffness to investigate forced vibrations of a flexible
system. Fallahi et al. [12] also developed a finite element formulation to analyze a flexible
slider–crank mechanism system in which the local co-ordinate system was employed. A
co-rotational finite element formulation of a slender curve beam element was presented
by Hsiao and Yang [13]. Fung and Chen [14] presented a finite element method for the
dynamic analysis of a flexible connecting rod of slider–crank mechanism with
time-dependent boundary condition. In all the above references, the crank rotates with a
constant speed. However, the realistic operating condition is that as the crank is driven
by a PM synchronous servo motor, the rotation speed of the crank is not constant.

The computed torque method originally developed for rigid manipulators was tried on
the flexible link systems [15]. In order to assure system robustness, Flcola et al. [16]
presented a simplified strategy to implement the sliding mode control of a two-joint robot
with a flexible forearm. Choi et al. [17] applied a new sliding mode controller to the tip
position control of a single-link flexible manipulator. In recent years, advancements in
magnetic materials, semiconductor power devices, and control theory have made the PM
synchronous servo motor drive play a vitally important role in motion-control applications
in the low-to-medium power range. The desirable features of the PM synchronous servo
motor are its compact structure, high air-gap flux density, high power density, high
torque-to-inertia ratio, and high torque capability. Moreover, compared with an induction
servo motor, a PM synchronous servo motor has such advantages as higher efficiency, due
to the absence of rotor losses and lower no-load current below the rated speed; and its
decoupling control performance is much less sensitive to the parametric variation of the
motor [18]. To achieve fast four-quadrant operation and smooth starting and acceleration,
the field-oriented control [19], or vector control, is used in the design of the PM
synchronous servo motor drive.

As far as the mechanism is concerned, little work has appeared on the coupled system,
both from the point of view of the theoretical formulation of the problem and the vibration
control of the mechanism behaviour. In this paper, the main objective is focused on the
dynamic formulations and the vibration control of a PM synchronous servo motor coupled
with a slider–crank mechanism system. First, a slider–crank mechanism system actuated
by a PM synchronous servo motor is formulated. Next, in order to control the coupled
mechanical system with robust characteristics, a variable structure controller is designed
to control the crank with a constant angular speed and the desired trajectories. In addition,
the problem of vibration control is addressed by substituting a saturation function for the
control law. Numerical results show that the dynamic behaviour of the controller–motor–
mechanism system not only reduces the dynamic deflections of the flexible connecting rod,
but also keeps good tracking performances. In addition, it is also found that the proposed
VSC is robust to external disturbances.

2. FORMULATION OF THE DYNAMIC MODEL

In this paper, the connecting rod is modelled as a Timoshenko beam, that is, the effects
of rotary inertia and shear deformation are considered. The dynamic analysis process of
the Euler-beam, simple-flexure and rigid-body models was given in reference [9] and a
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constant rotation speed was assumed. However, in this paper the driven motor operates
with non-constant speeds and the tracking trajectories. The flexible slider–crank
mechanism driven by a PM synchronous servo motor is shown in Figure 1, and consists
of the rigid crank OA with length r; the flexible cylindrical rod AB with length l; and the
piston with mass M4. For other symbols in this figure, see Nomenclature (Appendix E).

2.1.  

By using Hamilton’s principle, integration by parts and some algebraic relations, a
complete derivation of the equations of motion is given in Appendix A. The non-linear
dynamic equations of motion are

g
l

0

− rAr{rutt −[utt + vftt +2vt ft −(x+ u)f2
t ] sin (u+f)

+[vtt −(x+ u)ftt −2ut ft −f2
t u] cos (u+f)} dx

−M4 r{rutt −[utt + vftt +2vt ft −(l+ u)f2
t ] sin (u+f)

+[vtt −(l+ u)ftt −2ut ft −f2
t u] cos (u+f)}+ lr cos u

−1
3 M2 r2utt + gr Kt i*q − g2

r Jm utt − g2
r Bm ut =0, (1a)

g
l

0

{rA{[rutt sin (u+f)+ ru2
t cos (u+f)− utt −2vt ft − vftt ]v

+(x+ u) [rutt cos (u+f)− ru2
t sin (u+f)+ vtt −2ut ft −(x+ u)ftt ]}

+rI(ftt −ctt +ftt c2 +2ft ct c)} dx

+M4 {[rutt sin (u+f)+ ru2
t cos (u+f)− utt −2vt ft − vftt ]v

+(l+ u) [rutt cos (u+f)− ru2
t sin (u+f)+ vtt −2ut ft −(l+ u)ftt ]}

−ll cos f− {EAvx (ux + 1
2 v2

x )+KGA(vx −c)+M4 [rutt cos (u+f)

−ru2
t sin (u+f)−2ft ut − vf2

t + vtt −(l+ u)ftt ]}u(l, t) sec2 f=0, (1b)

rA[ru2
t cos (u+f)−2vt ft +(x+ u)f2

t + rutt sin (u+f)− utt − vftt ]

−Cx ut +EA(uxx + vx vxx )=0, (1c)

Figure 1. Slider–crank mechanism with a flexible connecting rod driven by a PM synchronous servo motor.
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Figure 2. At end point B, the displacement relationship among Db , U(1, t) and V(1, t).

rA[−rutt cos (u+f)+ ru2
t sin (u+f)+2ft ut + vf2

t − vtt +(x+ u)ftt ]

−Cy vt +EA[vx (uxx + vx vxx )+ vxx (ux + 1
2 v2

x )]+KGA(vxx −cx )=0, (1d)

rI(f2
t c+ftt −ctt )−Cc ct +KGA(vx −c)+EIcxx =0, (1e)

and the boundary conditions are

u(0, t)=0, v(0, t)=0, cx (0, t)=0, cx (l, t)=0, (2a–d)

[(F− mN) sec f−M4 ax (l, t) sec2 f]−KGA[vx (l, t)−c(l, t)] tan f

−EA[ux (l, t)+ 1
2 v2

x (l, t)] (1+ vx (l, t) tan f)=0. (2e)

Equations (1a, b) describe the rigid-body motions of the crank and the connecting rod,
respectively, while equations (1c, d, e) describe the flexural vibrations of the connecting rod
which is modelled by Timoshenko beam theory. It is seen that the rigid-body motion and
the flexural vibrations are coupled. The non-linear partial differential equations (1c, d, e)
include the second order spatial derivatives of all the variables u, v and c. The five
boundary conditions equations (2a, b, c, d, e) and one constraint condition equation (A4)
are satisfied to solve the equations (1c, d, e). Boundary condition equation (2d) states that
there is zero moment at revoluting joint B, while equation (2e) describes the dynamic
behaviour of the slider in the X-direction.

Figure 3. Schematic of the motor-gear-mechanism.



 –  609

2.2.  

Defining the following dimensionless variables and parameters as

U=
u
l
, V=

v
l
, j=

x
l
, R=

r
l
, t=vT t ,

v2
T =

p4EI
rAl4

, v2
L =

p4EA
rAl2

, S4 =
M4

rAl
, S2 =

M2

rAl
,

z2 =
v2

T

v2
L
, v2

s =
p4KGA
rAl2

, h2 =
v2

T

v2
S
, L=

l

rAl2v2
T
,

o1 =
Cx

rAvT
, e2 =

Cy

rAvT
, e3 =

Cc

rAvT
, F� =

F− mN
rAl2v2

T
,

I*q =
gr Kt i*q
rAl2v2

T
, J�m =

g2
r Jm

rAl2
, B�m =

g2
r Bm

rAl2vT
,

and substituting into equations (1a–e) and (2a–e) and the constraint condition (A4), we
have the dimensionless governing equations

g
1

0

−R{Rutt −[Utt +Vftt +2Vt ft −(j+U)f2
t ] sin (u+f)

+[Vtt −(j+U)ftt −2Ut ft −f2
t V] cos (u+f)} dj

−S4 R{Rutt −[Utt +Vftt +2Vt ft −(1+U)f2
t ] sin (u+f)

+ [Vtt −(1+U)ftt −2Ut ft −f2
t V] cos (u+f)}+LR cos u

−1
3 S2 R2utt − J�m utt −B�m ut =−I*q , (3a)

g
1

0

{[Rutt sin (u+f)+Ru2
t cos (u+f)−Utt −2Vt ft −Vftt ]V

+(j+U) [Rutt cos (u+f)−Ru2
t sin (u+f)+Vtt −2Ut ft −(j+U)ftt ]

+z2(ftt −Ctt +ftt C2 +2ft Ct C)} dj

+S4 {[Rutt sin (u+f)+Ru2
t cos (u+f)−Utt −2Vt ft −Vftt ]V

+(1+U) [Rutt cos (u+f)−Ru2
t sin (u+f)+Vtt −2Ut ft −(1+U)ftt ]}

−L cos f−6 1
p4z2 Vj (Uj + 1

2 V2
j )+

1
p4h2 (Vj −C)+S4 [Rutt cos (u+f)

−Ru2
t sin (u+f)−2ft Ut −Vf2

t +Vtt −(1+U)ftt ]7U(1, t) sec2 f=0,

(3b)

Utt + e1 Ut −Ru2
t cos (u+f)+2ft Vt −(j+U)f2

t

−Rutt sin (u+f)+Vftt −
1

p4z2 (Ujj +Vj Vjj )=0, (3c)
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Vtt + e2 Vt −Ru2
t sin (u+f)−2ft Ut −f2

t V−(j+U)ftt +Rutt cos (u+f)

−
1

p4z2 (Vj Ujj + 3
2 V2

j Vjj +Uj Vjj )−
1

p4h2 (Vjj −Cj )=0, (3d)

Ctt +
e3

z2 Ct +
1

p4h2z2 (C−Vj )−f2
t C−

1
p4z2 Cjj −ftt =0, (3e)

and the boundary conditions

U(0, t)=0, V(0, t)=0, Cj (0, t)=0, (4a–c)

Cj (1, t)=0, (5a)

F� sec f−S4 Ax (1, t) sec2 f−
1

p4h2 [Vj (1, t)−C(1, t)] tan f

−
1

p4z2 [Uj (1, t)+ 1
2 V2

j (1, t)] (1+Vj (1, t) tan f)=0, (5b)

where

Ax (1, t)=
ax (1, t)

lv2
T

=−Rutt sin (u+f)−Ru2
t cos (u+f)

+Utt +2Vt ft +Vftt −(1+U)f2
t ,

and the dimensionless constraint conditions in equations (A4), (A5), (A8) and (A9) are

V(1, t)=U(1, t) tan f, (5c)

F(8)=R sin u−sin f=0, (6a)

F8 8t =Rut cos u−ft cos f=0, (6b)

F8 8tt =Ru2
t sin u−f2

t sin f0 g. (6c)

In order to apply the Galerkin method, it is necessary to simplify and change the boundary
conditions (5b) and (5c) from non-homogeneous to homogeneous by using the following
variable transformation [9] as

U(1, t)= h(t), (7a)

U(j, t)=U	 (j, t)+ j · h(t), (7b)

V(j, t)=V	 (j, t)+ j · h(t) tan f. (7c)

The physical interpretation of h(t) is the non-dimensional axial deformation of the
connecting rod at j=1. Substituting equations (7a–c) into equations (3a–e) and using
equation (5c), one obtains the following equations of motion

g
1

0

−R{Rutt −[U	 tt +V	 ftt +2ft V	 t −f2
t U	 + j(htt +2ht ft tan f

+h(ftt tan f+f2
t +2f2

t sec2 f)−f2
t )] sin (u+f)

+[V	 tt −U	 ftt −2ft U	 t −f2
t V	 + j(htt tan f+2ht ft tan2 f

+h(ftt tan2 f+f2
t tan f(2 sec2 f−1))−ftt )] cos (u+f)} dj

−S4 R{Rutt −(U	 tt +V	 ftt +2ft V	 t −f2
t U	 +(htt +2ht ft tan f
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+h(ftt tan f+f2
t +2f2

t sec2 f)−f2
t )] sin (u+f)

+[V	 tt −U	 ftt −2ft U	 t −f2
t V	 +(htt tan f+2ht ft tan2 f

+h(ftt tan2 f+f2
t tan f(2 sec2 f−1))−ftt )] cos (u+f)}

+LR cos u− 1
3 S2 R2utt − J�m utt −B�m ut =−I*q , (8a)

g
1

0

{[jR((h+1) cos (u+f)+ h tan f sin (u+f))+R(cos (u+f)U	

+sin (u+f)V	 )]utt +[j2(h sec2 f−2h−1)+ j((h sec2 f−2(h+1))U	

−2h tan fV	 )−U	 2 −V	 2 + z2C2 + z2]ftt −(V	 + jh tan f)U	 tt

+(U	 + j(1+ h))V	 tt +[j2 tan f+ j(tan fU	 −V	 )]htt − z2Ctt

+[2jh sec2 f(j tan f+tan fU	 −V	 )]f2
t +[jR(h tan f cos (u+f)

−(h+1) sin (u+f))+R cos (u+f)V	 −R sin (u+f)U	 ]u2
t +2[j2ht tan2 f

−j((h+1)U	 t − ht tan2 fU	 +tan f(V	 t h+V	 ht ))+ z2ft C−U	 U	 t −V	 V	 t]ft} dx

+S4 {[R(h+1) cos (u+f)+ h tan f sin (u+f))+R(cos (u+f)U	

+sin (u+f)V	 )]utt +[(h sec2 f−2h−1)+ (h sec2 f−2(h+1))U	

−2h tan fV	 −U	 2 −V	 2]ftt −(V	 + h tan f)U	 tt +(U	 +(1+ h))V	 tt

+[tan f+(tan fU	 −V	 )]htt +[2h sec2 f(tan f+tan fU	 −V	 )]f2
t

+[R(h tan f cos (u+f)− (h+1) sin (u+f))+R cos (u+f)V	

−R sin (u+f)U	 ]u2
t +2[ht tan2 f−((h+1)U	 t − ht tan2 fU	 +tan f(V	 t h+V	 ht ))

−U	 U	 t −V	 V	 t ]ft}− {S4 R cos (u+f)utt +S4 [(h tan2 f−1)−U	 ]ftt

+S4 V	 tt +S4 tan fhtt +2S4 (ht tan2 f−U	 t )ft −S4 R sin (u+f)u2
t

+S4 [h tan f(2 sec2 f−1)−V	 ]f2
t +

1
p4h2 (h tan f−C+V	 j )

+
1

p4z2 [(h+ 3
2 h2 tan2 f)V	 j + h2 tan f(1

2 h tan2 f+1)+V	 j (U	 j + 1
2 V	 2

j )

+h tan f(U	 j + 3
2 V	 2

j )]}h sec2 f−L cos f=0, (8b)

U	 tt + e1 U	 t +2ft V	 t −f2
t U	 +ftt V	 −

1
p4z2 (U	 jj +V	 j V	 jj + h tan fV	 jj )

+j{ht [e1 +2ft tan f]− h[f2
t (1−2 sec2 f)+ftt tan f]+ htt −f2

t }

−Ru2
t cos (u+f)−Rutt sin (u+f)=0, (8c)

V	 tt + e2 V	 t −2ft U	 t −f2
t V	 −ftt U	 −

1
p4h2 (V	 jj −Cj )

−
1

p4z2 [V	 j U	 jj + h tan fU	 jj + 3
2 (V	 2

j +2h tan fV	 j + h2 tan2 f)V	 jj

+U	 j V	 jj + hV	 jj ]+ j{htt tan f+ ht [e2 tan f+2ft tan2 f]

+h[e2 ft sec2 f−f2
t tan f(1−2 sec2 f)+ftt tan2 f)−ftt}

−Ru2
t sin (u+f)+Rutt cos (u+f)=0, (8d)
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Ctt +
e3

z2 Ct +
1

p4h2z2 (C−V	 j )−f2
t C−

1
p4z2 Cjj (8e)

and the boundary conditions are

U	 (0, t)=V	 (0, t)=Cj (0, t)=0, (9a–c)

U	 (1, t)=V	 (1, t)=Cj (1, t)=0, (10a–c)

and (5b) becomes

htt +2ft ht tan f+
1

p4h2

1
S4

cos2 f tan f[V	 j (1, t)−C(1, t)]+ h{(2 sec2 f−1)f2
t

+ftt tan f+
1

p4h2

1
S4

sin2f+
1

p4z2

1
S4

cos2 f[1+2V	 j (1, t) tan f

+3
2 V	 2

j (1, t) tan2 f+U	 j (1, t) tan2 f]}+
1

p4z2

1
S4

cos2 f{1
2 h3 tan4 f

+3
2 h2 tan2 f[1+V	 j (1, t) tan f]+ [U	 j (1, t)+ 1

2 V	 2
j (1, t)] [1+V	 j (1, t) tan f)}

−Rutt sin (u+f) cos2 f−Ru2
t cos (u+f) cos2 f−f2

t −
1
S4

F� cos f=0. (11)

After the variable transformations (7a, b, c), the non-homogeneous boundary conditions
(5b, c) are changed to homogeneous boundary conditions (10a, b, c) and one additional
equation (11), which describes the axial deformation of the connecting rod at j=1.

2.3.  

Satisfying the homogeneous boundary conditions equations (9) and (10), the nth mode
solutions of U	 , V	 and C are

U	 (j, t)= s
a

n=1

fn (t) sin (npj),

V	 (j, t)= s
a

n=1

gn (t) sin (npj),

C(j, t)= s
a

n=1

Cn (t) cos (npj). (12)

Substituting equation (12) into equations (8a–e) and equation (11) and then applying the
Galerkin method, one obtains

[−R2(S4 +1)− 1
3 S2 R2 − J�m ]u� +$0 R

z2
s
a

m=1

am gm +R(S4 + 1
2)h tan f1 sin (u+f)

+0− R
z2

s
a

m=1

am fm −R(S4 + 1
2) (h tan2f−1)1 cos (u+f)%f�

+
R

z2
s
a

m=1

am sin (u+f) f� m +
R

z2
s
a

m=1

cos (u+f)g̈m
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+[R(S4 + 1
2) (sin (u+f)+ tan f cos (u+f))]h� −B�m u�

+$z2R s
a

m=1

am ġm f� −
R

z2
s
a

m=1

am fm f� 2 +R(2h� f� tan f+(h−1)f� 2

+2hf� 2 sec2 f) (S4 + 1
2)] sin (u+f)+$z2 s

a

m=1

am f� m f� +
1

z2
s
a

m=1

am gm f� 2

−2Rh� f� tan2 f(S4 + 1
2)−R tan f(2 sec2 f−1) (S4 + 1

2)f�
2] cos (u+f)

+LR cos u=−I*q , (13a)

$R((h+1) cos (u+f)+ h tan f sin (u+f)) (S4 + 1
2)+

R
z2 0cos (u+f) s

a

m=1

am fm

+sin (u+f) s
a

m=1

am gm 1−S4 Rh sec2 f cos (u+f)%u�
+$(h sec2 f−2h−1) (S4 + 1

3)+
1

z2 0(h sec2 f−2(h+1)) s
a

m=1

cm fm

−2h tan f s
a

m=1

cm gm 1− 1
2 0 s

a

m=1

f 2
m + s

a

m=1

g2
m 1+

z2

2
s
a

m=1

C2
m + z2

−S4 h sec2 f0(h tan2 f−1)−
1

z2
s
a

m=1

am fm 1%f� − 1
z2 0 1

z2
s
a

m=1

gm

+h tan f s
a

m=1

cm 1f� m +
1

z2 0 1
z2

s
a

m=1

fm +(1+ h) s
a

m=1

cm −S4 h sec2 f s
a

m=1

am 1g̈m

+$S4 h sec2 f0 1
z2

s
a

m=1

am gm − h tan f(2 sec2 f−1)1+2h sec2 f0tan f(S4 + 1
3)1

+$(S4 + 1
3) tan f+

1
z2 0tan f s

a

m=1

cm fm − s
a

m=1

cm gm1−S4 h sec2 f tan f%h�
+

1
z2

tan f s
a

m=1

cm fm −
1

z2
s
a

m=1

cm gm %f� 2 +$R(h tan f cos (u+f)

−(h+1) sin (u+f)) (S4 + 1
2)+

R
z2

cos (u+f) s
a

m=1

am gm

−
R

z2
sin (u+f) s

a

m=1

am fm +S4 Rh sec2 f sin (u+f)%u� 2 +2$(S4 + 1
3)h� tan2 f



.-.   .-. 614

−0 1
z2

(h+1) s
a

m=1

cm f� m −
1

z2
h� tan2 f s

a

m=1

cmfm

+tan f0 1
z2

h s
a

m=1

cm ġm +
1

z2
h� s

a

m=1

am gm 11− 1
2 s

a

m=1

fm f� m − 1
2 s

a

m=1

gm ġm

−S4 h sec2 f0h� tan2 f−
1

z2
s
a

m=1

am f� m 1%f� −6 1
p4h2 0h tan f− s

a

m=1

(−1)mCm

+ s
a

m=1

(−1)m(mp)gm 1+
1

p4z2 $(h+ 3
2 h2 tan2 f) s

a

m=1

(−1)m(mp)gm

+h2 tan f(1
2 h tan2 f+1)+0 s

a

m=1

s
a

n=1

(−1)m+ n(mnp2) fn + s
a

m=1

s
a

n=1

(−1)m

×(mn2p3)g2
n 1gm + h tan f0 s

a

m=1

(−1)m(mp) fm + 3
2 s

a

m=1

(mp)2g2
m 1%7

×h sec2 f−L cos f=0, (13b)

f� m −z2am Ru� sin (u+f)+ (gm −z2cm h tan f)f� +z2cm h� + e1 f� m +2f� ġm

+z2cm e1 h� +0 1
p4z2 (mp)2 −f� 21fm +

1
p4z2 $− s

a

n=1

s
a

i=1

kmni gi gn +(mp)2h tan fgm %
+z2 {cm [2h� f� tan f− hf� 2(1−2 sec2 f)−f� 2]−Ram u� 2 cos (u+f)}=0, (13c)

g̈m +z2am Ru� cos (u+f)− [fm +z2cm (1− h tan2 f)]f� +z2cm tan fh� + e2 ġm

+z2cm e2 tan fh� −2f� f� m −f2gm +
1

p4h2 ((mp)2gm −(mp)Cm )

−
1

p4z2 $ 1
z2

s
a

n=1

s
a

i=1

kmni fi gn −(mp)2h tan ffm + 3
2 01

2 s
a

n=1

s
a

i=1

s
a

j=1

lmnij gj gi gn

+
2

z2
h tan f s

a

n=1

s
a

i=1

kmni gi gn −(mp)2h2 tan2 fgm 1+
1

z2
s
a

n=1

s
a

i=1

kmni gi fn

−h(mp)2gm %+z2 {cm (2h� f� tan2 f+ h(e2 f� sec2 f−f� 2 tan f(1−2 sec2 f))]

−Ram u� 2 sin (u+f)}=0, (13d)

C� m +
e3

z2 C� m +0 1
p4h2z2 −f� 2 +

1
p4z2 (mp)21Cm −

1
p4h2z2 (mp)gm =0, (13e)
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h� −Ru� sin (u+f) cos2 f+ hf� tan f+2f� h� tan f+
1

p4h2

1
S4

cos2 f tan f

×$ s
a

n=1

(np) (−1)ngn − s
a

n=1

(−1)nCn %+ h6(2 sec2 f−1)f� 2 +
1

p4h2

1
S4

sin2 f

+
1

p4z2

1
S4

cos2 f$1+2 s
a

n=1

(np) (−1)ngn tan f

+3
2 s

a

n=1

s
a

i=1

(ip) (np) (−1)n+ igi gn tan2 f+ s
a

n=1

(np) (−1)nfn tan2 f%7
+

1
p4z2

1
S4

cos2 f{1
2 h3 tan4 f+ 3

2 h2 tan2 f$1+ s
a

n=1

(np) (−1)ngn tan f%
+$s

a

n=1

(np) (−1)nfn+1
2 s

a

n=1

s
a

i=1

(ip) (np) (−1)n+igi gn %$1+ s
a

n=1

(np) (−1)ngn tan f%7
−Ru� 2 cos (u+f) cos2 f−f� 2 −

1
S4

F� cos f=0, (13f)

where (
.
) and ()' represent derivatives with respect to the dimensionless time t and space

j, respectively. For details of am , bm , . . . , lmnij , see Appendix B.
The Runge–Kutta numerical method will be used to integrate the above ordinary

differential equations for the transient solutions of f, u, h, fm , gm and Cm . By substituting
the solutions into equation (12) and using equations (7b, c), the transverse and longitudinal
displacements, U(1

2, t) and V(1
2, t), of the midpoint of the connecting rod are obtained

respectively.
Then, equations (13a–f) can be rewritten as the following non-linear coupled set of

ordinary differential equations

M(b)b� +N(b, b� )+FT
b L=BU, (14)

where

b=[f u h f g C]T,

and f=[f1 f2 · · · fm ], g=[g1 g2 · · · gm ], C=[C1 C2 · · · Cm ]. The elements of M, N, Fb ,
B and U are given in Appendix C.

The constraint position (6a), velocity (6b) and acceleration (6c) must be held at any time.
By using equations (6c) and (14), the equation in the matrix form is

$M
Fb

FT
b

0 %$b�
L%=$BU−N(b, b� )

g %. (15)

This is a system of differential-algebraic equations and the matrices element can be found
in Appendix C.

2.4.       

The differential-algebraic equations of mechanism motion derived above are
summarized in the matrix form of equation (15) and the constraint equation (6a). An
implicit method will be employed to solve the differential-algebraic equations of the system.
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Equations (15) and (6a) may be reordered and partitioned, according to the
decomposition of b=[f u h f g C]T. If the constraints are independent, the matrix Fb

has full row rank, and there is always at least one non-singular submatrix Fb of rank 2
[20]. Gauss–Jordan reduction of the matrix Fb with double pivoting defines a partitioning
of b=[pT qT]T, p=[f]T, q=[u h f g C]T such that Fp is the submatrix of Fp whose
columns correspond to elements p of b, and Fq is the submatrix of Fb whose columns
correspond to element q of b. The elements of the vectors p and q, and matrices Fp and
Fq are detailed in Appendix D. Thus, equations (15) and (A7) can be rewritten as:

Mppp̈+Mpqq̈+FT
p L=BpU−Np,

Mqpp̈+Mqqq̈+FT
q L=BqU−Nq,

Fp p̈+Fq q̈= g. (16)

Eliminating L and p̈ in the above equations yields

M
 (q)q̈+N
 (q, q̇)=Q
 U, (17)

where

M
 =Mqq −MqpF−1
p Fq −FT

q (F−1
p )T[Mpq −MppF−1

p Fq ],

N
 =[Nq −FT
q (F−1

p )TNp]+ [Mqp F−1
p −FT

q (F−1
p )TMppF−1

p ]g,

Q
 =Bq −FT
q (F−1

p )TBp, U=[I*q ].

The result is a set of differential equation with only one independent generalized
co-ordinate q. The equation is an initial value problem and can be integrated by using the
fourth order Runge–Kutta method.

2.5.   

Let X=[q, q̇]T be the state variable vector. Then one can rewrite equation (17) in terms
of X as

X� = â(X)+ b
 U(t), (18)

where

â(X)=$ q̇
−M
 −1N
 %, b
 =$ 0

M
 −1Q
 %, U(t)= [I*q ].

3. DESIGN OF THE VSC CONTROLLER

The variable structure system is a special class of non-linear systems characterized by
a discontinuous control action which changes the system structure on the state reaching
the switching surface. The major merit of these systems is their insensitivity to parameter
variations and external disturbances. In this section, the first object is to design the
reaching law VSC via the design of switching functions, the next step is to design the
reaching mode and the overall control law which give a desired system dynamics in
the reaching mode. The main requirement in the design is that the controller should satisfy
the reaching condition, which guarantees the existence of the sliding mode on the switching
surface.
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3.1.   

In switching surface design, it is essential to use the error signal and its derivatives to
form the co-ordinates and the switching surface. When the state variables slide on the
switching surface and to the origin, the system error goes to zero and the desired target
state is reached.

In this paper, only one input is needed for the motor–mechanism coupled system.
Rewriting equation (18) as

q̈= a(q, q̇)+ b(q)U(t), (19)

where a(q, q̇)=−M
 −1N
 , b(q)=M
 −1Q
 and U(t) is the control current input I*q .
To control the speed vector q̇, many more sophisticated schemes will be necessary.

Unlike conventional VSC, the integral variable structure control (IVSC) applied in the
speed controller is suitable for the first order system without any information on the
acceleration. Furthermore, if one wishes to track the trajectories required for the specified
motor revolution, then the tracking controller is designed by the desired motion. The two
cases will demonstrate the good performance of the reaching law VSC system. The design
procedure can be divided into two subcases as follows.

3.1.1. Speed controller design
Let the speed error vector be

e= q̇− q̇d , (20)

where the desired speed vector q̇d is a constant vector. The resultant error state equation is

ė= q̈− q̈d = a(q, q̇)+ b(q)U− q̈d . (21)

Since there is one control input, a single switching surface S(e) will be constructed for
the speed control system. By using a scalar function with an integration of the speed error
vector e, one has the switching surface [21]

S(e)=C1 e+C2 g
t

0

e(g) dg. (22)

It is noted that for the one control input in the first order system (21), only one switching
surface (22) is needed. Figure 4 shows the block diagram of the constant speed controller
applied to a flexible slider–crank mechanism driven by a PM synchronous servo motor.
The controller is called the integral variable structure control (IVSC). Substituting
equation (21) into the time derivative of S(e), one obtains

S� =C1 ė+C2 e=C1 [a(q, q̇)+ b(q)U− q̈d ]+C2 e. (23)

Figure 4. Block diagram of the constant speed controller applied to a flexible slider–crank mechanism driven
by a PM synchronous servo motor with IVSC.
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3.1.2. Tracking controller design
The tracking error vector of the motor revolution is

ẽ=X−Xd =$ẽi

ẽ�i%=$q− qd

q̇− q̇d%, (24)

where Xd =[qd , q̇d ]T, and the first and second derivatives of ẽi are defined as the following

ẽ�i = ẽj = q̇− q̇d , (25a)

ẽ�i = ẽ�j = q̈− q̈d = a(q, q̇)+ b(q)U− q̈d . (25b)

A single switching function S(e) for the second order system equation (25) is

S(ẽ)=Cẽ=[Ci Cj ]$ẽi

ẽj%=Ci ẽi +Cj ẽj , (26)

Substituting equations (25a, b) into the time derivative of S(ẽ), one can obtain

S� =Ci ẽ�i +Cj ẽ�j =Ci ẽj +Cj [a(q, q̇)+ b(q)U− q̈d ]. (27)

The position control can also be obtained in the tracking control as if the desired
position, speed and acceleration are time-independent in the control process. Figure 5
shows the block diagram of the tracking controller.

3.2.      

The treatment given here is to define the reaching law with proportional plus constant
power rates:

S� =−PS−Q =S =k sgn (S), 0Q kQ 1, (28)

where P and Q are positive constant coefficients. This reaching law decreases the reaching
time and increases the reaching speed when the state is far away from the switching surface
[22, 23].

Thus, by using the above reaching law (28), the state is forced to approach the switching
surface faster and the chattering is also suppressed. It is noted that the selection of equation
(28) guarantees the convergence of the trajectories to the switching surface. Sliding will
occur along the hyperplane S=0 as long as the necessary hitting condition [24]:

SS� Q 0 (29)

exists. By substituting equations (22) and (23) into equation (29) for the speed controller
and substituting equations (26) and (27) into equation (29) for the tracking controller, the

Figure 5. Block diagram of the tracking controller applied to a flexible slider–crank mechanism driven by a
PM synchronous servo motor with VSC.
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convergence condition (29) is always satisfied regardless of the signs of equations (22) and
(26). Thus, one can obtain the control laws as follows.

3.2.1. Speed controller design
The single input for the speed controller design is

U=−(C1 b(q))−1[C2 e+C1 (a(q, q̇)− q̈d )+PS+Q =S =k sgn (S)]. (30)

3.2.2. Tracking controller design
The single input for the tracking controller design is

U=−(Cj b(q))−1[Ci ẽj +Cj (a(q, q̇)− q̈d )+PS+Q =S =k sgn (S)]. (31)

In the conventional VSC, there exists the undesirable steady state error owing to the
non-ideal sliding mode. The proposed IVSC scheme for speed control gives the additional
advantage of improving the steady state performance.

In order to reduce the chattering, the sgn (S) in the discontinuous control laws (30) and
(31) is replaced by a saturation function inside the boundary layer [25]. The saturation
function is

sat (S)=6S/D,
sgn (S),

=S =ED,
=S =qD,

(32)

where D is a boundary layer width.

4. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical simulations, parameters of the slider–crank mechanism are chosen as:
l=0·1524 m; d=0·00635 m; R=0·3, M2 =0·2 kg, M4 =0·03781 kg, r=0·007834 N · s2/
m4, E=2·068×1011 N/m2, G=80×109 N/m2, K=0·886, I=7·981×10−11 m4, e1 =0·2,
e2 =0·2, e3 =0·001, gr =1, k=0·3 and D=0·5. The parameters of the motor are:
Kt = 0·6732 N · m/A, Jm =1·32×10−3 N · m · s2, Bm =5·78×10−3 N · m · s/rad.

By using the Runge–Kutta method, equation (18) is solved for the motor-mechanism
coupled system. Numerical results are divided into two parts: (1) dynamic analysis and (2)
vibration control. Each part includes a constant angular velocity and a trapezoidal angular
velocity of the crank rotation.

4.1.  

4.1.1. Constant angular velocity
The crank rotates with a constant angular velocity u� (t)=0·2. The initial conditions are

p(0)= ṗ(0)= q(0)= 0, and q̇(0)= [0·2 0 0 0 0]T. The results in Figures 6(a)–( f) show the
transient amplitudes of the first (solid line), the second (dash line) and the third
(dash-dotted line) modes. It is seen that the responses of the higher modes are only small
percentages of those of the first mode. The transverse amplitude g in Figure 6(b) is about
500 times of the longitudinal amplitude f in Figure 6(a). The transient rotary angles c due
to bending are shown in Figure 6(c). The longitudinal amplitudes at the end point of the
connecting rod are shown in Figure 6(d). Figures 6(e)–( f) represent the transverse
responses at j=1/2 and j=1, respectively. In Figures 6(a) and (d), the system oscillates
violently first and then approaches a stable state because of the introduction of damping
terms e1, e2 and e3.
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Figure 6. Transient displacements of the first three modes of the flexible connecting rod for a constant angular
velocity u� =0·2: (a) longitudinal amplitudes f; (b) transverse amplitudes g; (c) rotary angles c; (d) axial
deformation h(t) at the end point B; (e) transverse deformation V(1, t); (f) transverse deformation V(1/2, t).
(First mode ——, second mode ----, third mode –·–·.)

4.1.2. Trapezoidal angular velocity
In many applications, a motor is used to drive the flexible systems. Usually, the velocity

input is a trapezoidal shape. As show in Figure 7(b), the prescribed angular velocity is
u� d (t) is

0·2t

t1
0Q tE t1,

0·2 t1 Q tE t2,
u� d (t)=g

G

G

G

G

F

f

0·2(t− t3)
(t2 − t3)

t2 Q tE t3,

0 t3 Q t.

The initial conditions are p(0)= ṗ(0)= q(0)= q̇(0)= 0. Figures 7(a)–(h) compare the
transient amplitudes between the results of Case 1: t1 =40, t2 =110, t3 =150 (solid line)
and Case 2: t1 =50, t2 =100, t3 =150 (dash line). Because Case 1 has a faster speed-up
and faster speed-down in the transient processes (0E tE 40 and 110E tE 150), it is
observed that the amplitudes of Case 1 are larger than those in Case 2. In the constant
angular velocity
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Figure 7. Tip transient displacements of the flexible rod for a trapezoidal angular velocity: (a) desired angle u;
(b) desired angular velocity u� , (c) longitudinal amplitude f1; (d) transverse amplitude g1; (e) rotary angle c1; (f) axial
deformation h(t) at the end point B; (g) transverse deformation V(1, t); (h) transverse deformation V(1/2, t).
(Case 1 ——, Case 2 ----. )

process the amplitudes of both cases are equal but with a time (t=10) shift. After tq 150,
the motion-induced vibrations occur, and both amplitudes gradually decrease to zero. This
is because part of the energy of the rigid-body motion goes into the flexible deformations
of the links and is dissipated by the viscous damping.



0.04
(g) (h)

(e) (f)

(c) (d)

(a) (b)

0.00

–0.02

0.02

–0.04
0 100 15050 200

f 1 (
x1

0–5
)

h
 (

x1
0–3

)
I q

 (
x1

0–4
)

*

–2

2

4

0

–4

0.00

–0.01

0.01

10

0

20

30

40

0.195

0.190

0.200

0.205

0.210

–0.5

–1.0

0.5

1.0

0.0

–0.005

0.000

0.005

0.010

–0.010

–0.5

0.5

0.0

–1.0
0 100 15050

g
1

··

·

1

200

.-.   .-. 622

4.2.  

Yeung and Chen [26–28] used the pole placement method to obtain good dynamic
responses of flexible robot arms. However, their method has only been applied to linear
systems associated with the constant symmetry inertia matrices. In this paper, the
non-linearity and asymmetry inertia matrices are included in the system, and the
traditional trial-and-error method will be applied to choose the gains of the control laws

Figure 8. Constant angular velocity controlled by the proposed VSC law: (a) crank angle u; (b) crank angular
velocity u� ; (c) crank angular acceleration u� ; (e) longitudinal amplitude f1; (f) transverse amplitude g1; (g) rotary
angle c1; (h) axial deformation h(t) at the end point B. (Controlled ——, uncontrolled ----.)
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in the following sections. Since the responses of the higher modes are small enough to be
negligible, the first-mode amplitude of the connecting rod will be considered only in the
vibration control.

Figure 9. Constant angular velocity controlled by the proposed VSC law with external disturbance F=49 N
during 50E tE 200: (a) crank angle u; (b) crank angular velocity u� ; (c) crank angular acceleration u� ;
(e) longitudinal amplitude f1; (f) transverse amplitude g1; (g) rotary angle c1; (h) axial deformation h(t) at the
end point B. (Controlled ——, uncontrolled ----.)
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4.2.1. Constant angular velocity control
By trial and error, the gain matrices for the switching function are chosen as

Ci =[0·06 0·03 0·02 0·008 0·005],

Cj =[0·5 0·65 0·8 −0·05 −0·02],

P=0·003 and Q=0·0002. The transient responses are shown in Figures 8(a)–(h).
Figures 8(a)–(c) show the crank angle, angular velocity and angular acceleration,

Figure 10. Controlled tip deflection for a prescribed trapezoidal angular velocity; (a) crank angle u, (b) crank
angular velocity u� ; (c) crank angular acceleration u� ; (e) longitudinal amplitude f1; (f) transverse amplitude g1;
(g) rotary angle c1; (h) axial deformation h(t) at the end point B. (Controlled ——, uncontrolled ----.)
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respectively. Figure 8(d) shows the dimensionless current input. It is seen that the angular
velocity and acceleration, and the dimensionless current input have the observable
chattering at the start process. In Figures 8(e)–(h), it is shown that the proposed VSC law
decreases the longitudinal and transverse amplitudes, rotary angle and axial deformation
at end point (solid lines). The responses for speed control with an external disturbance
(F=49 N) applied during 50E tE 200 are shown in Figures 9(a)–(h). In Figure 9(b) the

Figure 11. Controlled tip deflection for a prescribed trapezoidal angular velocity with external disturbance
F=49 N during 50E tE 200: (a) crank angle u; (b) crank angular velocity u� ; (c) crank angular acceleration
u� ; (e) longitudinal amplitude f1; (f) transverse amplitude g1; (g) rotary angle c1; (h) axial deformation h(t) at
the end point B. (Controlled ——, uncontrolled ----.)
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angular velocity response is completely robust with perfect rejection of disturbance, but
the larger amplitudes of I*q during 50E tE 200 as shown in Figure 9(d) are diminished
at sacrifice of the disturbance rejection. The transient behaviours of the longitudinal
amplitudes f1, transverse amplitudes g1 and rotary angles c1 in Figures 9(e)–(g) are almost
the same as Figures 8(e)–(g).

4.2.2. Trapezoidal angular velocity control
The desired trapezoidal trajectory is assumed to be the same as Case 1 in section 4.1.2.

By choosing the proper gain matrices Ci , Cj and constant coefficients P and Q, the flexible
deflections will be bounded in an allowance range. The gain matrices for the switching
surface are

Ci =[5 6 12 0·08 0·05], Cj =[50 10 30 0·75 0·35],

P=0·05 and Q=0·0025, which are chosen by trial and error. The transient responses
(dash line, without control) for the desired trapezoidal angular velocity are shown in
Figures 10(a)–(h). In order to suppress the deflections in Figures 10(e)–(h), the crank angle,
velocity and acceleration have slight changes with respect to the desired trapezoidal
trajectories. The current input in Figure 10(d) also has chattering. The
suppressed amplitudes are shown by solid lines in Figures 10(e)–(h). Figures 11(a)–(h)
show the robustness with respect to the external disturbances. The external force
(F=49 N) is considered as a disturbance during 50E tE 200. In order to reject the
disturbance, the control input in Figure 11(d) is larger than that in Figure 10(d). In
Figure 11(d), it is obvious that the higher control input provides the higher torque to
the mechanism during impacting disturbance. The deflections in Figures 11(e)–(h) only
have slight changes as compared to those in Figures 10(e)–(h). This means that the
proposed controller–motor–mechanism coupled system is robust to the external
disturbance.

5. CONCLUSIONS

The dynamic analysis and vibration control of a flexible slider–crank mechanism driven
by a PM synchronous servo motor have been studied in this paper. Hamilton’s principle
is employed to derive the governing equations of the whole system including the
slider–crank mechanism and the servo motor. The boundary condition of the connecting
rod moving with the slider is the time-dependent boundary support, but not the purely
simple support. When the rigid crank rotates, the motion-induced vibrations occur at the
flexible connecting rod. To suppress the vibrations, we have successfully designed a new
method called reaching law variable structure control (VSC) method.

The significant contributions of the flexible slider–crank mechanism system are
summarized as follows. (1) The controller, motor and slider–crank mechanism coupled
system have been derived completely with the crank operating with a non-constant speed.
(2) A transformation method is successfully used to treat the non-homogenous
boundary condition. (3) The design procedure of vibration control can also be applied
to any other mechanism with more than one flexible connecting rod. (4) The design
procedure of VSC is simple. Numerical results have shown that the proposed VSC not only
eliminates deflections of the flexible connecting rod, but also keeps good tracking
performances. (5) Robust control performances of the controller–motor–mechanism
coupled system are obtained by the proposed controllers with respect to the external
disturbance.
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APPENDIX A

The displacement field of the deformed beam is shown in Figure 1. i, j are the unit vectors
of the fixed co-ordinate system (OXY), and er , eu and ei , ej are the unit vectors of the
moving co-ordinates with origins at O and A respectively.

The displacement field of the Timoshenko beam is

u1 (x, y, t)= u(x, t)− yc(x, t), (A1)

u2 (x, y, t)= v(x, t), (A2)

where u and v represent the axial and transverse displacements of any point on the
connecting rod, and c is the slope of the deflection curve due to bending deformation
alone. The position vector of one arbitrary point P on the connecting rod is

R(x, y, t)= rer +(x+ u1)ei +(y+ u2)ej

=[r cos u+(x+ u− yc) cos f+(y+ v) sin f]i

+[r sin u−(x+ u− yc) sin f+(y+ v) cos f]j.

Since the slider moves along the X-axis, the point B, where the connecting rod is pinned
to the slider, also moves along the X-axis. Thus, the constraint condition of point B is

0=R(l, 0, t) · j

= r sin u−[l+ u(l, t)] sin f+ v(l, t) cos f,
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which means that the displacement is always zero in the Y direction. Substituting the
geometric relation

r sin u= l sin f, (A3)

into the above equation, one has

v(l, t)= u(l, t) tan f. (A4)

The above displacement relationship at point B can also be obtained from the geometric
plot shown in Figure 2.

The holomonic constraint equation is

F(8)= r sin u− l sin f=0, (A5)

where 8=[u f]T is the vector of generalized co-ordinates.
The kinematic velocity and acceleration are obtained by taking the first and second

derivatives of equation (A5), respectively, as

F8 8t =0, (A6)

and

F8 8tt =−(F8 8t )8 8t 0 g, (A7)

where

F8 8t = rut cos u− lft cos f, (A8)

F8 8tt = ru2
t sin u− lf2

t sin f. (A9)

It is seen that u(l, t)= v(l, t)=0 for the assumption of a simply-supported end [6, 29]
is also included in equation (A4). If the axial displacement u(x, t) is negligible (i.e., only
the transverse displacement v(x, t) is considered), the constraint condition at point B
becomes v(l, t)=0, and it becomes a simply supported end. In the present work, the axial
and transverse displacements are considered simultaneously; u(l, t) and v(l, t) are not
independent and related by equation (A4). Taking the variation of equation (A4), we have

dv(l, t)= du(l, t) tan f+ u(l, t) sec2 fdf. (A10)

Substituting equation (A10) into dR(x, y, t), taking x= l and y=0, one has

dR(l, 0, t)= du(l, t)ei + dv(l, t)ej = du(l, t) sec fi.

Differentiating R(x, y, t) with respect to time, one gets the absolute velocity of the arbitrary
point P on the connecting rod as

Rt (x, y, t)= rut eu +(ut − yct )ei + vt ej

−ft ek ×[(x+ u− yc)ei +(y+ v)ej ]

= [−rut sin (u+f)+ ut − yct +ft (y+ v)]ei

+[rut cos (u+f)+ vt −ft (x+ u− yc)]ej . (A11)

Because the slider moves in the X direction and the component of the acceleration of
the connecting rod in the Y direction is zero, the acceleration of point B can be written
as

Rtt (l, 0, t)= ax (l, t) sec fi,
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where

ax (l, t)=Rtt (l, 0, t) · ei

=−rutt sin (u+f)− ru2
t cos (u+f)

+ utt +2vt ft + vftt −(l+ u)f2
t . (A12)

The kinetic energy of the connecting rod can be expressed as

T3 = 1
2 gV

rRt (x, y, t) · Rt (x, y, t) dV=g
l

0

T* dx, (A13)

where

T*=
rA
2

{[−rut sin (u+f)+ ut + vft ]2 + [rut cos (u+f)+ vt −ft (x+ u)]2}

+
rI
2

[(ft −ct )2 +f2
t c2]. (A14)

The Lagrangian strains are

exx = ux − ycx + 1
2 v2

x , (A15)

eyy =0, (A16)

exy = 1
2 [−c+ vx +(ux − ycx ) (−c)]1 1

2 (vx −c), (A17)

where the higher order terms ux c, yccx are neglected in exy . The strain energy of the
connecting rod can be expressed as

U3 = 1
2 gV

sij eij dV=g
1

0

U* dx, (A18)

where

U*= 1
2 [EA(ux + 1

2 v2
x )2 +KGA(vx −c)2 +EIc2

x ]. (A19)

The kinetic energy of the crank with mass M2 is

T2 = 1
2 (1

3 M2 r2)u2
t = 1

6 M2 r2u2
t . (A20)

The kinetic energy of the slider is

T4 = 1
2 M4 Rt (l, 0, t) · Rt (l, 0, t). (A21)

Figure 3 shows a PM synchronous servo motor system including a motor-gear
mechanism and the output torque is applied to a flexible slider–crank mechanism. It is
noted that gr is the gear ratio, Kt is the motor torque constant, i*q is q-axis current, Jm is
the rotor moment of inertia and Bm is the damping factor. The virtual work done by the
external force F, and the friction force mN acting on the slider, and the driving torque ta

applied on the crank [30] is

dWA =[(F− mN)i+Nj]dR(l, 0, t)+ ta du

=(F− mN)du(l, 0, t) sec f+ gr (Kt i*q − gr Jm utt − gr Bm ut )du. (A22)
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The generalized constraint reaction force can be obtained in terms of the Lagrange
multiplier as:

QC =FT
8 l,

where

F8 =[r cos u− l cos f]. (A23)

Thus, the virtual work by all constraint forces is

dWC = d8TQC. (A24)

By using Hamilton’s principle, one can write

0=g
t2

t1
6g

l

0

dL dx+ dT2 + dT4 + dW4 + dWC7 dt, (A25)

where L(u, ut , f, ft , u, ut , ux , v, vt , vx , c, ct , cx )=T*−U* is the Lagrangian density of
the servo motor and the slider–crank mechanism.

The point (x, y)= (0, 0) is the common revoluting joint of the rigid crank and the
flexible connecting rod, and the values u(0, t)=0 and v(0, t)=0 are specified, thus one
have du(0, t)=0 and dv(0, t)=0. The slope angles c at the end points x=0, l of the
connecting rod are free, therefore dc(0, t)$ 0 and dc(l, t)$ 0.

Substituting equations (A13, A18, A21, A22) into equation (A25), using the constraint
condition (A10) at x= l and introducing the damping terms Cx , Cy and Cc , which are
proportional to the relative velocities ut , vt and ct , one obtains the governing equations
(1a–e) and the boundary conditions (2a–e).

APPENDIX B

Define

Ym (j)=z2 sin (mpj), Zm (j)=z2 cos (mpj),

Yn (j)=z2 sin (npj), Zn (j)=z2 cos (npj),

and

am =g
1

0

Ym (j) dj=
z2
mp

[(−1)m+1 +1],

bm =g
1

0

Zm (j) dj=0,

cm =g
1

0

jYm (j) dj=
z2
mp

(−1)m+1,

dmn =g
1

0

Yn (j)Ym (j) dj=61,
0,

if m= n,
if m$ n,

emn =g
1

0

Zn (j)Zm (j) dj=61,
0,

if m= n,
if m$ n,
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fmn =g
1

0

Y'n (j)Ym (j) dj= 80,
2mn(cos (np) cos (mp)−1)

n2 −m2 ,

if m= n,

if m$ n,

gmn =g
1

0

Y0n (j)Ym (j) dj=6−(np)2,
0,

if m= n,
if m$ n,

hmn =g
1

0

Z0n (j)Zm (j) dj=6−(np)2,
0,

if m= n,
if m$ n,

imn =g
1

0

Z'n (j)Ym (j) dj=6−np,
0,

if m= n,
if m$ n,

jmng
1

0

Y'n (j)Zm (j) dj=6np,
0,

if m= n,
if m$ n,

−
z2
2

ni2p3, if m= i2 n,

kmni =g
1

0

Y'n (j)Y0i (j)Ym (j) dj=g
G

G

G

G

F

f

z2
2

ni2p3, if m= n− i,

0, others,

lmnij =g
1

0

Y'n (j)Y0i (j)Y'j (j)Ym (j) dj= 8−
1
2 ni2jp4,

1
2 ni2jp4,
0,

if m= n+ i2 j, m= i− n2 j,
if m= n− i2 j, m=−n− i+ j,
others.

APPENDIX C

The elements of matrices M, N, Fb , B and U are given as follows.

M11 M12 M13 M14 M15 M16 N1

M21 M22 M23 M24 M25 M26 N2

M31 M32 M33 M34 M35 M36 N3

M=G
G

G

G

G

K

k

M41 M42 M43 M44 M45 M46

G
G

G

G

G

L

l

, N=G
G

G

G

G

K

k

N4
G
G

G

G

G

L

l

,

M51 M52 M53 M54 M55 M56 N5

M61 M62 M63 M64 M65 M66 N6

−cos f T

R cos u

0
Fb =G

G

G

G

G

K

k

0
G
G

G

G

G

L

l

, B=[0 −1 0 0 0 0]T, U=[I*q ],

0
0
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where M are the (2+3m)× (2+3m) matrices, N and FT
b are the (2+3m)×1 matrices,

M11, M12, M13, M21, M22, M23, M31, M32, M33 are chosen as the 1×1 matrices, M14,
M15, M16, M24, M25, M26, M34, M35, M36 are chosen as the 1×m matrices, M41,
M42, M43, M51, M52, M53, M61, M62, M63, N4, N5, N6 are chosen as the m×1 matrices,
M44, M45, M46, M54, M55, M56, M64, M65, M66 are chosen as the m×m matrices and

M11 =$(h sec2 f−2h−1) (S4 + 1
3)+

1
z2 0(h sec2 f−2(h+1)) s

a

m=1

cm fm

−2h tan f s
a

m=1

cm gm 1− 1
2 0 s

a

m=1

f 2
m + s

a

m=1

g2
m1+

z2

2
s
a

m=1

C2
m + z2 −S4 h sec2 f

×0(h tan2 f−1)−
1

z2
s
a

m=1

am fm 1%,

M12 =$R((h+1) cos (u+f)+ h tan f sin (u+f)) (S4 + 1
2)+

R
z2 0cos (u+f) s

a

m=1

am fm

+sin (u+f) s
a

m=1

am gm 1−S4 Rh sec2 f cos (u+f)%,

M13 =$(S4 + 1
3) tan f+

1
z2 0tan f s

a

m=1

cm fm − s
a

m=1

cm gm 1−S4 h sec2 f tan f%,

M14 =−
1

z2 0 1
z2

s
a

m=1

gm + h tan f s
a

m=1

cm 1,

M15 =
1

z2 0 1
z2

s
a

m=1

fm +(1+ h) s
a

m=1

cm −S4 h sec2 f s
a

m=1

am 1,

M16 = 0,

M21 =0 R
z2

s
a

m=1

am gm +R(S4 + 1
2)h tan f1 sin (u+f)

+0− R
z2

s
a

m=1

am fm −R(S4 + 1
2) (h tan2 f−1)1 cos (u+f),

M22 = [−R2(S4 +1)− 1
3 S2 R2 − J�m ],

M23 = [R(S4 + 1
2) (sin (u+f)+ tan f cos (u+f))],

M24 =
R

z2
s
a

m=1

am sin (u+f), M25 =
R

z2
s
a

m=1

am cos (u+f), M26 =0,

M31 = h tan f, M32 =−R sin (u+f) cos2 f, M33 =1, M34 =M35 =M36 =0,

M41 = gm −z2cm h tan f, M41 = gm −z2cm h tan f,
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M42 =−z2am R sin (u+f), M43 =z2cm , M44 =1, M45 =M46 =0,

M51 =−fm +z2cm (h tan2 f−1), M52 =z2am R cos (u+f),

M53 =z2cm tan f, M54 =0, M55 =1, M56 =0,

M61 =M62 =M63 =M64 =M65 =0, M66 =1,

N1 =$S4 h sec2 f0 1
z2

s
a

m=1

am gm − h tan f(2 sec2 f−1)1+2h sec2 f(tan f(S4 + 1
3)

+
1

z2
tan f s

a

m=1

cm fm −
1

z2
s
a

m=1

cm gm %f� 2 +$R(h tan f cos (u+f)

− (h+1) sin (u+f)) (S4 + 1
2)+

R
z2

cos (u+f) s
a

m=1

am gm

−
R

z2
sin (u+f) s

a

m=1

am fm +S4 Rh sec2 f sin (u+f)%u� 2 +2$(S4 + 1
3)h� tan2 f

−0 1
z2

(h+1) s
a

m=1

am f� m −
1

z2
h� tan2 f s

a

m=1

cm fm

+tan f0 1
z2

h s
a

m=1

cm ġm +
1

z2
h� s

a

m=1

am gm 11− 1
2 s

a

m=1

fm f� m − 1
2 s

a

m=1

gm ġm

−S4 h sec2 f0h� tan2 f−
1

z2
s
a

m=1

am f� m 1%f� −6 1
p4h2 0h tan f− s

a

m=1

(−1)mCm

+ s
a

m=1

(−1)m(mp)gm 1+
1

p4z2 $(h+ 3
2 h2 tan2 f) s

a

m=1

(−1)m(mp)gm

+ h2 tan f(1
2 h tan2 f+1)+0 s

a

m=1

s
a

n=1

(−1)m+ n(mnp2) fn

+ s
a

m=1

s
a

n=1

(−1)m(mn2p3)g2
n 1gm + h tan f0 s

a

m=1

(−1)m(mp) fm

+ 3
2 s

a

m=1

(mp)2g2
m 1%7h sec2 f,
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N2 =−B�m u� +$z2R s
a

m=1

am ġm f� −
R

z2
s
a

m=1

am fm f� 2 +R(2h� f� tan f+(h−1)f� 2

+2hf� 2 sec2 f) (S4 + 1
2)% sin (u+f)+$z2 s

a

m=1

am f� m f� +
1

z2
s
a

m=1

am gm f� 2

−2Rh� f� tan2 f(S4 + 1
2)−R tan f(2 sec2 f−1) (S4 + 1

2)f�
2% cos (u+f)

N3 =2f� h� tan f+
1

p4h2

1
S4

cos2 f tan f$ s
a

n=1

(np) (−1)ngn − s
a

n=1

(−1)nCn %
+ h6(2 sec2 f−1)f� 2 +

1
p4h2

1
S4

sin2 f+
1

p4z2

1
S4

cos2 f

×$1+2 s
a

n=1

(np) (−1)ngn tan f

+ 3
2 s

a

n=1

s
a

i=1

(ip) (np) (−1)n+ igi gn tan2 f+ s
a

n=1

(np) (−1)nfn tan2 f%7
+

1
p4z2

1
S4

cos2 f61
2 h3 tan4 f+ 3

2 h2 tan2 f$1+ s
a

n=1

(np) (−1)ngn tan f%
+$ s

a

n=1

(np) (−1)nfn + 1
2 s

a

n=1

s
a

i=1

(ip) (np) (−1)n+ igi gn %
×$1+ s

a

n=1

(np) (−1)ngn tan f%7−Ru� 2 cos (u+f) cos2 f−f� 2 −
1
S4

F� cos f,

N4 = e1 f� m +2f� ġm +z2cm e1 h� −f� 2fm +
1

p4z2 $(mp)2fm − s
a

n=1

s
a

i=1

kmni gi gn

+(mp)2h tan fgm %+z2{cm [2h� f� tan f− hf� 2(1−2 sec2 f)−f� 2]

−Ram u� 2 cos (u+f)},

N5 = e2 ġm +z2cm e2 tan fh� −2f� f� m −f� 2gm +
1

p4h2 ((mp)2gm −(mp)Cm )

−
1

p4z2 $ 1
z2

s
a

n=1

s
a

i=1

kmni fi gn −(mp)2h tan ffm + 3
2 01

2 s
a

n=1

s
a

i=1

s
a

j=1

lmnij gj gi gn

+
2

z2
h tan f s

a

n=1

s
a

i=1

kmni gi gn −(mp)2h2 tan2 fgm 1+
1

z2
s
a

n=1

s
a

i=1

kmni gi fn
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− h(mp)2gm %+z2 {cm [2h� f� tan2 f+ h(e2 f� sec2 f−f� 2 tan f(1−2 sec2 f))]

−Ram u� 2 sin (u+f)},

N6 =
e2

z2 C� m +0 1
p4h2z2 −f� 2 +

1
p4z2 (mp)21Cm −

1
p4h2z2 (mp)gm ,

APPENDIX D

Choose p=[f], q=[u h f g C], Fq =[R cos u 0 0 0 0] and Fp =[−cos f]. The
entries of matrices in equation (36) are

Mpp =[M11], Mpq =[M12 M13 M14 M15 M16],

M22 M23 M24 M25 M26

M32 M33 M34 M35 M36

Mqp =[M21 M31 M41 M51 M61]T, Mqq =G
G

G

G

G

K

k

M42 M43 M44 M45 M46 G
G

G

G

G

L

l

,

M52 M53 M54 M55 M56

M62 M63 M64 M65 M66

Np =[N1], Nq =[N2 N3 N4 N5 N6]T, Bp =[0].

Where the elements (e.g., M11, M12, . . . , M66, N1, N2, . . . , N6) are the same as in
Appendix B.

APPENDIX E: NOMENCLATURE

A cross-sectional area of the connecting rod
Bm motor damping coefficient
C1, C2 gain matrices for the switching function of the speed control
Ci , Cj gain matrices for the switching function of the tracking control
Cx , Cy , Cc coefficients for viscous damping
d flexible connecting rod diameter
E Young’s modulus
e the speed error vector for the speed controller
ẽi the position error vector for the tracking controller
ẽj the speed error vector for the tracking controller
ei , ej unit vectors in the x and y directions, respectively
er , eu unit vectors of the rotation co-ordinates originated at O
F external force acting on the slider
FC the generalized constraint reaction force
gr gear ratio
h(t) non-dimensional axial deformation of the connecting rod at j=1
I area moment of inertia about the neutral axis
i, j unit vectors in the X and Y directions, respectively
I*q non-dimensional input current
i*q q-axis current
Jm motor moment inertia
K shear deflection coefficient
KT motor torque constant
l length of connecting rod
M2, M4 mass of crank and slider, respectively
N reaction force
P, Q positive constant coefficient
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Q the vector of generalized co-ordinates
r length of the crank
R dimensionless crank length
R position vector related to XOY co-ordinate system
S switching function
sgn (S) sign function
sat (S) saturation function
T2 the kinetic energy of the crank
T3 the kinetic energy of the flexible connecting rod
T4 the kinetic energy of the slider
t time
U control input
U3 the strain energy of the flexible connecting rod
u, v longitudinal and transverse displacements of the rod, respectively
xAy moving co-ordinate system
XOY global co-ordinate system
D boundary layer width
FQ holonomic constraint equation
L Lagrange multiply
exx , exy , eyy Lagrangian strains
f angle between X-axis and undeformed axis of the flexible connecting rod
k constant coefficient between 0 and 1
m the coefficient of sliding friction
u crank angle
r mass density of connecting rod
t dimensionless time
ta torque applying to the crank
tm motor torque
j dimensionless crank length parameter
c the slope of the deflection curve due to bending deformation alone


